Ускорение Кориолиса, его величина направление и физический смысл
Из формул, использующих понятие МЦУ (точка Q на рис. 3),
; ; (6)
,
следует, что в данный момент времени распределение ускорений точек тела при плоском движении таково, как если бы тело вращалось вокруг оси Qz с угловой скоростью и угловым ускорением .
Угол отсчитывается от вектора ускорения какой-либо точки в направлении круговой стрелки . При отыскании положения МЦУ по ускорениям двух точек, например по и , под углом к соответствующим ускорениям проводят лучи AQ и BQ. Точка пересечения лучей (точка Q) является МЦУ плоской фигуры в данный момент времени.
Направления векторов и помимо формул (4) могут быть найдены из отдельных векторных формул
; ; . (7)
Рис. 4
Чтобы избежать анализа расположения трех взаимно перпендикулярных векторов формул (7) при известных , , направления и находят аналогично случаю вращательного движения тела вокруг неподвижной оси (рис. 4).
Рис. 5
Кинематика плоского движения
катка радиуса R. при отсутствии скольжения по направляющей (в общем случае криволинейной), имеет некоторые особенности вследствие того, что мгновенный центр скоростей катка (точка Р ) совпадает с точкой окружности касающейся направляющей (рис. 5). Поэтому при движении катка расстояние от его центра (точки А) до МЦС является неизменным во времени и равным R.
AP(t) = const = R (8)
Свойство неизменности расстояния АР позволяет установить дополнительные соотношения, удобные для расчетов кинематических характеристик катка. Представим вектор скорости точки А с помощью:
а) формулы естественного способа задания движения точки
, где - единичный вектор естественного трехгранника, касательный в точке A к кривой ее движения; SA - криволинейная координата точки;