Внешние и регулировочные характеристики синхронного генератора
Построение внешних характеристик.
Внешние характеристики синхронного генератора представляют собой зависимости напряжения U от тока нагрузки Iа при неизменных токе возбуждения Iв, угле φ и частоте f1 (постоянной частоте вращения ротора n2).
Рис. 1.26 – Упрощенные векторные диаграммы синхронной неявнополюсной машины
Они могут быть построены при помощи векторных диаграмм. Допустим, что при номинальной нагрузке Iа ном генератор имеет номинальное напряжение Uном, что достигается соответствующим выбором тока возбуждения. При уменьшении тока нагрузки до нуля напряжение генератора станет равным э.д. с. холостого хода Е0. Таким образом, векторная диаграмма, построенная при номинальной нагрузке, сразу дает две точки внешней характеристики. Форма внешней характеристики зависит от характера нагрузки, т.е. от угла сдвига фаз φ между Ù и İа, так как в зависимости от этого угла изменяется величина вектора Ė0 (при заданном значении U = Uном).
На рис. 1.26 показаны упрощенные векторные диаграммы генератора с неявно выраженными полюсами для активной (а), активно-индуктивной (б) и активно-емкостной (в) нагрузок. При активной и активно-индуктивной нагрузках Е0 > U; при активно-емкостной нагрузке Е0 < U. Таким образом, в первых двух случаях при увеличении нагрузки напряжение генератора уменьшается, в третьем – увеличивается. Это объясняется тем, что при активно-емкостной нагрузке имеется продольная намагничивающая составляющая реакции якоря, а в двух других случаях–продольная размагничивающая (при чисто активной нагрузке угол ψ > 0).
Рис. 1.27 – Внешние характеристики синхронного генератора при различном характере нагрузки
На рис. 1.27 изображены внешние характеристики генератора при различных видах нагрузки, полученные при одинаковом для всех характеристик значении Uном (а) и при одинаковом значении Uo = Eo (б). Во втором случае при U = 0 (короткое замыкание) все характеристики пересекаются в одной точке, соответствующей значению тока короткого замыкания Iк.
Изменение напряжения.
При переходе от режима холостого хода к режиму номинальной нагрузки изменение напряжения характеризуется величиной
(1.24)
Обычно генераторы работают с cosφ = 0,9 ÷ 0,85 при отстающем токе. В этом случае Δu% = 25 ÷ 35%. Чтобы подключенные к генератору потребители работали при напряжении, близком к номинальному, требуется применять специальные устройства, стабилизирующие его выходное напряжение U, например быстродействующие регуляторы тока возбуждения. Чем больше Δи%, тем более сложным получается регулирующее устройство, а поэтому желательно иметь генераторы с небольшой величиной Δи%. Однако небольшую величину Δи% можно получить, уменьшая синхронное индуктивное сопротивление хсн (в неявнополюсных машинах) или соответственно хd и xq (в явнополюсных машинах), т.е. поток якоря, для чего требуется увеличивать воздушный зазор между ротором и статором. При таком способе уменьшения Δи% необходимо увеличивать м.д. с. обмотки возбуждения, что заставляет увеличивать размеры этой обмотки и делать в конечном итоге синхронную машину более дорогой.
В мощных турбогенераторах мощность ограничивается именно размерами ротора, на котором размещена обмотка возбуждения. Поэтому в современных турбогенераторах с повышением мощности машины одновременно возрастает и изменение напряжения Δи%.
В гидрогенераторах (по сравнению с
турбогенераторами) воздушный зазор обычно имеет гораздо большую величину, поэтому у них относительно слабее проявляется реакция якоря, т.е. они имеют меньшие синхронные индуктивные сопротивления, выраженные в относительных единицах, что обусловливает и меньшее изменение напряжения Δи%.
Рис. 1.28 – Регулировочные характеристики синхронного генератора при различном характере нагрузки
Регулировочные характеристики синхронного генератора.
Эти характеристики (рис. 1.28) представляют собой зависимости тока возбуждения Iв от тока нагрузки Iа при неизменных напряжении U, угле φ и частоте f1. Они показывают, как надо изменять ток возбуждения генератора, чтобы поддерживать его напряжение неизменным при изменении тока нагрузки. Очевидно, что при возрастании нагрузки необходимо при φ > 0 увеличивать ток возбуждения, а при φ < 0-уменьшать его. Чем больше угол φ по абсолютной величине, тем в большей степени требуется изменять ток возбуждения.