Схемы комбинированных ПРА
Рис.18. Обобщенная структурная схема комбинированного ПРА с ВЧ генератором
Рис. 19. Схемы комбинированных ПРА с ВЧ генератором и индуктивным балластом (а) и импульсного с двумя источниками питания (б)
Рис. 20. Осциллограммы напряжения на лампе (а) и тока лампы (б) в комбинированном импульсном ПРА
Схема емкостного ПРА с последовательным полупроводниковым стабилизатором тока на транзисторе (рис. 23, а) для ламп ЛЛ мощностью 20 Вт (при емкости балластного конденсатора 6,8 мкФ) обеспечивает следующие параметры: ток - 0,428 А; потребляемая мощность - 38 Вт; амплитуда тока лампы - 0,5; к.п.д. ПРА - 54,6%; коэффициент амплитуды тока - 1,17. Такая схема обладает достаточно низким к.п.д. и обеспечивает большие пульсации светового потока лампы. В полупроводниковых ПРА стабилизация средних за период параметров осуществляется, в основном, балластным конденсатором С, который обеспечивает статическую стабилизацию режима лампы. В то же время полупроводниковый стабилизатор тока служит для улучшения формы тока лампы и, таким образом, осуществляет динамическую стабилизацию режима.
В схеме емкостного ПРА с параллельным полупроводниковым стабилизатором (рис. 23, б) при малых токах весь ток конденсатора проходит через лампу. При увеличении тока сверх допустимого, прохождение части тока от конденсатора осуществляется в параллельную ветвь. Такая схема обладает несколько лучшими технико-экономическими показателями, однако и в ней пульсации светового потока находятся на уровне 30%.
Рис.21. Схемы полупроводниковых комбинированных ПРА: а - емкостного; б – индуктивного (СУ – система управления)
Рис.22. Схема комбинированного резонансного ПРА с преобразователем частоты (ПЧ)
Рис.23. Схемы емкостного ПРА с полупроводниковым стабилизатором тока: а – последовательная на транзисторе; б - параллельная полумостовая; в – трехфазная
Для снижения пульсаций и повышения технико-экономических показателей емкостных полупроводниковых ПРА целесообразно применять двух- и трехфазное питание. Например, в схеме трехфазного ПРА с полупроводниковым стабилизатором тока (а.с. 738199 СССР, HO5B 41/39, опубл. 1980) трехфазный мостовой выпрямитель (рис. 23, в) создает постоянное выпрямленное напряжение . Для статической стабилизации режима разрядной лампы в фазные провода включены балластные конденсаторы и. Выпрямленное напряжение мостовой коммутатор К подается на лампу, включенную последовательно с полупроводниковым стабилизатором тока , который осуществляет динамическую стабилизацию тока лампы. При этом через лампу протекает ток почти прямоугольной формы и некоторое снижение тока происходит лишь в момент коммутации. Питание лампы током прямоугольной формы обеспечивает следующее: 1) малые пульсации светового потока лампы, так как в ней поддерживается стационарный режим разряда; 2) напряжение на лампе в течение всего периода горения остается постоянным; 3) напряжение перезажигание примерно равно среднему напряжению горения, так как в течение короткого времени коммутации в лампе не успевает произойти заметная деионизация столба разряда, что особенно важно для ламп типа ДРЛ, у которых в период разгорания в индуктивных ПРА, напряжение перезажигания может в несколько раз превосходить напряжение горения; 4) подача на цепь лампа-стабилизатор напряжения почти прямоугольной формы позволяет существенно снизить действующее эквивалентное напряжение на уровне (1,1÷1,2) от и, тем самым, уменьшить потери мощности в стабилизаторе тока . Для примера приведем параметры для лампы типа ДРЛ 125 при питании, соответственно, от трехфазного емкостного ПРА с полупроводниковым стабилизатором тока и от индуктивного ПРА: ток лампы (А)-1,13; 1,25; амплитуда тока лампы (А)-1,22; 2,00; потребляемая мощность (Вт)- 135; 143; к.п.д. ПРА (%)- 93; 87; коэффициент пульсации (%)- 9; 63. Трехфазный аппарат обладает более высоким к.п.д. и обеспечивает существенное снижение пульсаций светового потока по сравнению с индуктивным ПРА. В трехфазной схеме стабилизатор тока поддерживает практически постоянным ток через лампу, поэтому ток выпрямителя также может быть принят постоянным.