Рентгеноструктурный анализ
Рентгеноструктурный анализ - метод исследования атомно-молекулярного строения веществ, главным образом кристаллов, основанный на изучении дифракции, возникающей при взаимодействии с исследуемым образцом рентгеновского излучения длины волны около 0,1 нм.
Экспериментальное исследование расположения атомов в кристаллах стало возможно лишь после открытия Рентгеном в 1895 рентгеновского излучения. Чтобы проверить, является ли это излучение действительно одним из видов электромагнитного излучения, Лауэ в 1912 посоветовал Фридриху и Книппингу пропустить рентгеновский пучок через кристалл и посмотреть, возникнет ли дифракционная картина. Опыт дал положительный результат. В основе опыта лежала аналогия с хорошо известным явлением дифракции в обычной оптике. Когда пучок света проходит через ряд малых отверстий, отстоящих друг от друга на расстояния, сравнимые с длиной световой волны, на экране наблюдается интерференционная (или, что в данном случае то же, дифракционная) картина из чередующихся светлых и темных областей. Точно так же, когда рентгеновские лучи, длина волны которых сравнима с расстояниями между атомами кристалла, рассеиваются на этих атомах, на фотопластинке возникает дифракционная картина.
Суть явления дифракции поясняется на рис.1, где изображены плоские волны, падающие на ряд рассеивающих центров. Под действием падающего пучка каждый такой центр испускает сферические волны; эти волны интерферируют друг с другом, что приводит к образованию волновых фронтов, распространяющихся не только в направлении первоначального падающего пучка, но и в некоторых других направлениях. Так называемая картина дифракции Лауэ (лауэграмма), полученная при прохождении пучка рентгеновского излучения сквозь тонкую кристаллическую пластинку минерала берилла, представлена на рис.2.
Рис.1. Пояснение сути явления дифракции.
Рис.2. Лауэграмма берилла.
Картина дифракции показывает наличие вращательной оси симметрии 6-го порядка, что характерно для гексагональной кристаллической структуры. Таким образом, эта картина несет важную информацию о структуре кристалла, на котором происходит дифракция, что и было, в частности, предметом изысканий У. Брэгга и его сына У. Брэгга.
На основе явления дифракции рентгеновского излучения отец и сын Брэгги создали необычайно ценный экспериментальный метод рентгеноструктурного анализа кристаллов. Их работы знаменуют собой начало развития основ современного рентгеноструктурного анализа. Благодаря рентгеновским установкам и компьютерам определение расположения атомов даже в сложном кристалле стало почти рутинным делом.
Какого же рода информацию о структуре кристалла может дать рентгеноструктурный анализ? Рентгеновское излучение - это электромагнитные волны, электрические поля которых взаимодействуют с заряженными частицами, а именно с электронами и атомами твердого тела. Поскольку масса электронов значительно меньше массы ядра, рентгеновское излучение эффективно рассеивается только электронами. Таким образом, рентгенограмма дает информацию о распределении электронов. Зная направления, в которых дифрагировало излучение, можно определить тип симметрии кристалла или кристаллический класс (кубический, тетрагональный и т.д.), а также длины сторон элементарной ячейки. По относительной интенсивности дифракционных максимумов можно определить положение атомов в элементарной ячейке.
По существу дифракционная картина представляет собой математически преобразованную картину распределения электронов в кристалле - фурье-образ. Следовательно, она несет информацию и о структуре химических связей между атомами. Наконец, распределение интенсивности в одном дифракционном максимуме дает информацию о размере кристаллитов, а также о несовершенствах (дефектах) решетки, механических напряжениях и других особенностях кристаллической структуры [1].