Пробивное напряжение

В гл. 1 мы видели, что механизм пробоя полевого транзистора можно объяснить возникновением лавинного процесса в переходе затвор - канал. Мы видели также, что обратное напряжение диода затвор — канал изменяется вдоль длины затвора, достигая максимального значения у стокового конца канала. Именно здесь происходит пробой полевого транзистора, не имеющего технологических дефектов. Если выводы стока и истока поменять местами, то пробивное напряжение почти не изменится. Поскольку для уменьшения тока стока необходимо увеличить обратное напряжение в цепи исток — затвор, то при фиксированном напряжении питания сток — исток .кажущееся напряжение пробоя в области стока должно монотонно уменьшаться вместе с уменьшением тока. Рассмотрим характеристики, изображенные на рис. 30. Когда Vзи=0, пробой наступает при Vcи= -27 в (прибор с каналом р-типа). Вспомним теперь, что в действительности пробой происходит между областями стока и затвора; это значит, что в цепи затвора течет большой ток, и поскольку затвор имеет нулевой потенциал по отношению к истоку, то пробивное напряжение цепи транзистора.

Если теперь повысить напряжение Vзи на +0,2 в, то напряжение пробоя цепи затвор — сток остается, как и прежде, равным —27 в, но кажущееся напряжение пробоя цепи сток — исток будет равным —26,8 в. Предельным для прибора является пробивное напряжение цепи сток — затвор. Теоретически оно будет постоянным независимо от потенциала истока, который может изменяться от потенциала стока в. одном крайнем случае до потенциала затвора в другом. Обычно это напряжение определяется при разомкнутой цепи истока и в согласии с принятой системой обозначений ему соответствует символ BVC30. Если на исток подано некоторое напряжение смещения X в, то кажущееся напряжение пробоя цепи сток — исток, обозначаемое BVсиХ, будет связано с напряжением BVc30 следующим соотношением:

BVсиХ = BVc30+VзиХ. (2.27)