Плазменное упрочнение в сочетании с другими способами воздействия на металлы
Плазменное упрочнение в сочетании с другими способами: такими как объемная закалка, закалка ТВЧ, лазерная закалка, ультразвуковая обработка, термодеформационное упрочнение, наплавка, напыление и др. позволяют повысить механические свойства упрочненных деталей. В работе [9] показаны различные варианты комплексного упрочнения. Исследованы структура, твердость, трещиностойкость и характер разрушения сталей ЗОХ1ГСА, 45, 9ХФ, 150ХНМ при различных сочетаниях объемной и плазменной термической обработки (плазменная закалка + отпуск, объемная закалка +пламенная закалка + отпуск). Использование комплексного упрочнения позволяет повысить трещиностойкость, микротвердость и износостойкость, по сравнению с простой плазменной закалкой в 1,5-2 раза. Плазменное упрочнению в сочетании с предварительной закалкой ТВЧ позволяет повысить трещиностойкость, ударную вязкость, пластичность в 1,3-2 раза, при сохранении твердости и износостойкости поверхности на высоком уровне [9]. Комплексная технология плазменного упрочнения включает в себя:
-закалка ТВЧ + плазменное упрочнение;
-закалка ТВЧ + отпуск + плазменное упрочнение
(температура отпуска 290, 300, 400 ° С).
Упрочненная таким способом деталь имеет композиционный рабочий слой [9] с высокой износостойкостью и трещиностойкостыю, и относительно, мягкую
пластичную сердцевину, рис. 2.49. Природа образования внутреннего отпущенного слоя аналогична случаю плазменного упрочнения предварительно закаленных сталей.
Рис. 2.49. Схема расположения упрочненных
слоев при плазменном упрочнении после закалки ТВЧ
1- слой плазменного (воздействия
2- отпущенный слой
3- слой закалки ТВЧ.
Более сложный композиционный рабочий слой образуется после комбинации:
- объемная закалка + плазменная закалка + лазерная закалка + отпуск
(температура отпуска 200° С);
- закалка ТВЧ + отпуск + плазменная закалка + лазерная закалка + отпуск
(температура отпуска 200° С);
- закалка ТВЧ +отпуск + плазменная закалка+ лазерная закалка
(температура отпуска 200° С).
Каждый из способов в отдельности обеспечивает определенную глубину упрочненного слоя и степень дисперсности мартенсита в нем
Z
ТВЧ
›
Z
П.З.
›
Z
Л.З.
,
d
ТВЧ
›
d
П.З.
›
d
Л.З.
где Z - глубина упрочненного слоя после закалки ТВЧ, плазменный и лазерный соответственно;
d - размер зерна после закалки ТВЧ, плазменной и лазерной соответственно.
Использование этих способов в определенной комбинации позволяет повысить микротвердость рабочей поверхности и трещиностойкость. Повышение трещиностойкости обусловлено увеличением степени дисперсности мартенсита, т.к. критическое напряжение хрупкому разрушению обратно пропорционально размеру
зерна. Кроме того, образование нескольких слоев в упрочненном слое, после комплексной обработки, (с различными структурными составляющими) изменяет микромеханизм разрушения, рис. 2.48. Трещины, распространяющиеся от поверхности в глубь упрочненного слоя, при переходе из твердого и хрупкого слоя лазерной закалки тормозятся в мягком и пластинчатом слое отпуска.