Математическое моделирование солитонов на ДНК
на рис. 1.а, 2.а ), дислокация возникла. В пользу этого утверждения также свидетельствует сравнение рис. 3(а) и 4(г).
Как показывают дополнительные расчеты, влияниена эффект проявляется в меньшей степени. Дислокация образуется или не образуется вне зависимости от значения ( или ). При больших значениях дислокация образуется медленнее, чем при меньших.
3) На рис. 3(а), 4(в,г) видно, что дислокация имеет кинкообразную форму.
Ширина дислокации зависит от параметров (чем больше , тем меньше ширина дислокации) и (чем больше , тем меньше ширина дислокации).
Развивая дальше модели солитонных возбуждений в ДНК (совместно с М.Ю.Масловым и др.) мы использовали условия, при которых цепочки ДНК моделируются набором ровибронных осцилляторов, подвешенных на невесомом нерастяжимом стержне; для простоты спирализация цепи не учитывается, а ровибронные степени свободы одной из цепочек считаются “замороженными”.
В этом случае гамильтониан для “активной” цепочки записывается в следующем виде:
H=H0+H1+H2
(1)
где: - число пар оснований в цепи; - гамильтониан, описывающий собственные осцилляции мономеров ( - углы вращения нуклеотидов в цепочке, - момент инерции оснований); - гамильтониан , характеризующий нелинейно-периодическую связь между осцилляторами (- константа упругости цепочки, ), - гамильтониан,
(а)
(б)
а)x0=200 б)x0=250
Рис.3
в) г)
в) x0=300 г) x0=350
Рис. 4
описывающий нелинейную связь между “активной” и “замороженной” () цепочками ДНК (- константа упругости водородных связей между комплементарными основаниями, коэффициенты в уравнении (1) определяются в соответствии с правилом: в случае АТ и ТА пар, в случае ГЦ и ЦГ пар; - параметр, полученный ранее (см. выше) и определяемый на основе модели синус-Гордона).
При малых гамильтониан, что совпадает с соответствующей частью общего гамильтониана, использованного ранее (см. выше). В этом случае уравнения движения для , полученные из (1),
имеют вид:
(2)
где произведена замена .
В случае в системе (2) можно перейти к безразмерному дифференциальному уравнению синус-Гордона:
, (3)
”непрерывный аналог” системы (2). Это уравнение имеет солитонные решения, в частности, односолитонное решение, или кинк, характеризующий динамику распространения дислокации в цепи.
В соответствии с (1) система нелинейных уравнений движения записывается следующим образом:
(4)
Как видим, системы (2) и (4) существенно различаются. Отметим, однако, что проведенное нами численное моделирование динамики систем (2) и (4) показало следующее: если в качестве начальных условий для численного интегрирования (2) выбрать односолитонное решение его “непрерывного аналога” (3) - кинк (см. выше), то обнаруживается принципиальное сходство в характере решений.
Однако, при задании начальных условий в следующем виде:
(5)
где - ”ступенчатая” функция с высотой ступени и углом наклона уступа A, выявилось различие динамики данных систем (срав. рис.1 и 2,3). Более точно, системы (2) и (4) численно интегрировались методом Рунге-Кутта четвертого порядка с начальными условиями, заданными в виде (7), в интервале с шагом . Граничные условия - “квази-циклические”: