Математическое моделирование солитонов на ДНК

Страница 4

на рис. 1.а, 2.а ), дислокация возникла. В пользу этого утверждения также свидетельствует сравнение рис. 3(а) и 4(г).

Как показывают дополнительные расчеты, влияниена эффект проявляется в меньшей степени. Дислокация образуется или не образуется вне зависимости от значения ( или ). При больших значениях дислокация образуется медленнее, чем при меньших.

3) На рис. 3(а), 4(в,г) видно, что дислокация имеет кинкообразную форму.

Ширина дислокации зависит от параметров (чем больше , тем меньше ширина дислокации) и (чем больше , тем меньше ширина дислокации).

Развивая дальше модели солитонных возбуждений в ДНК (совместно с М.Ю.Масловым и др.) мы использовали условия, при которых цепочки ДНК моделируются набором ровибронных осцилляторов, подвешенных на невесомом нерастяжимом стержне; для простоты спирализация цепи не учитывается, а ровибронные степени свободы одной из цепочек считаются “замороженными”.

В этом случае гамильтониан для “активной” цепочки записывается в следующем виде:

H=H0+H1+H2

(1)

где: - число пар оснований в цепи; - гамильтониан, описывающий собственные осцилляции мономеров ( - углы вращения нуклеотидов в цепочке, - момент инерции оснований); - гамильтониан , характеризующий нелинейно-периодическую связь между осцилляторами (- константа упругости цепочки, ), - гамильтониан,

(а)

(б)

а)x0=200 б)x0=250

Рис.3

в) г)

в) x0=300 г) x0=350

Рис. 4

описывающий нелинейную связь между “активной” и “замороженной” () цепочками ДНК (- константа упругости водородных связей между комплементарными основаниями, коэффициенты в уравнении (1) определяются в соответствии с правилом: в случае АТ и ТА пар, в случае ГЦ и ЦГ пар; - параметр, полученный ранее (см. выше) и определяемый на основе модели синус-Гордона).

При малых гамильтониан, что совпадает с соответствующей частью общего гамильтониана, использованного ранее (см. выше). В этом случае уравнения движения для , полученные из (1),

имеют вид:

(2)

где произведена замена .

В случае в системе (2) можно перейти к безразмерному дифференциальному уравнению синус-Гордона:

, (3)

”непрерывный аналог” системы (2). Это уравнение имеет солитонные решения, в частности, односолитонное решение, или кинк, характеризующий динамику распространения дислокации в цепи.

В соответствии с (1) система нелинейных уравнений движения записывается следующим образом:

(4)

Как видим, системы (2) и (4) существенно различаются. Отметим, однако, что проведенное нами численное моделирование динамики систем (2) и (4) показало следующее: если в качестве начальных условий для численного интегрирования (2) выбрать односолитонное решение его “непрерывного аналога” (3) - кинк (см. выше), то обнаруживается принципиальное сходство в характере решений.

Однако, при задании начальных условий в следующем виде:

(5)

где - ”ступенчатая” функция с высотой ступени и углом наклона уступа A, выявилось различие динамики данных систем (срав. рис.1 и 2,3). Более точно, системы (2) и (4) численно интегрировались методом Рунге-Кутта четвертого порядка с начальными условиями, заданными в виде (7), в интервале с шагом . Граничные условия - “квази-циклические”:

Страницы: 1 2 3 4 5 6