Магнитодипольное взаимодействие и эффективные поля в магнитных жидкостях
Используя экспериментальные результаты исследования концентрационных и температурных зависимостей магнитной восприимчивости, полученных в [Мои раб.] проведем расчеты эффективных полей в однородных магнитных жидкостях. На рисунке 16 представлены результаты расчета параметра эффективного поля для магнитной жидкости с исходной плотностью
, проведенного с помощью формулы (0) при использовании концентрационной зависимости магнитной восприимчивости.
Рисунок 16. Результаты расчета параметра эффективного поля п
Отметим, что в начальном интервале концентраций () зависимость
является практически линейной, поэтому расчеты для
дали нулевые значения. Начиная с концентрации
,
становится отличным от нуля и претерпевает интенсивный рост в области отмеченной ранее аномалии в концентрационной зависимости магнитной восприимчивости. В дальнейшем рост
с увеличением концентрации насыщается, а при
этот параметр начинает уменьшаться. Для проведения подобных оценок с помощью другого описанного метода, расчетной формулой которого для оценки
является выражение (?), необходимо экспериментально полученную концентрационную зависимость представить в виде конкретной функциональной зависимости. Анализ результатов концентрационных исследований магнитной восприимчивости позволяет аппроксимировать экспериментальные зависимости, представленные на рис.17 линейно-кусочной зависимостью типа :
Рисунок 17. Зависимость действительной части магнитной восприимчивости (кривая 2, f=200 Гц) и магнитной восприимчивости в постоянном поле (кривая 1) от объемной концентрации дисперсной фазы при напряженности измерительного поля 160 А/м.
( )
В этом случае для начального участка зависимости получим
, вследствие чего первый член в квадратных скобках выражения (3.18) равен 1 и
. Для интервала концентраций, превышающих
, согласно (0)
Использование этой зависимости дает для эффективного поля
и его параметра
следующие выражения: