Двумерный ЯМР-эксперимент
В настоящее время в двумерной ЯМР-спектроскопии, как правило, используются методы Фурье-спектроскопии. В этом случае проводится детектирование сигнала SUi, t2) из которого путем Фурье-преобразования вычисляется двумерный спектр S в частотной области. В принципе двумерный ЯМР-спектр можно получить и с использованием альтернативного метода – стохастического метода, однако этот метод находится пока в стадии разработки.
Основной 2М-ЯМР-эксперимент можно схематически представить во временной области, разделив его на следующие 4 фазы: подготовки, эволюции, смешивания и детектирования. На фазе детектирования сигналы, как и в одномерном случае, регистрируются через равные промежутки времени Д t2, затем они подвергаются оцифровке и накапливаются. Фаза подготовки, как правило, состоит из 90°-ного импульса, формирующего поперечную намагниченность. На протяжении фазы эволюции, длительность которой равна t, поперечная компонента намагниченности изменяется. Затем следует период смешивания, который, вообще говоря, в некоторых экспериментах может отсутствовать. Компоненты поперечной намагниченности связаны между собой разнообразными взаимодействиями. На протяжении интервала длительностью ti они подлежат детектированию и преобразованию. Длительность периода ti постоянно возрастает от эксперимента к эксперименту на величину ДЯй, причем длительность интервала tj определяется так же, как и интервала t2, теоремой Найквиста. Спектр, соответствующий каждому значению t, накапливается отдельно. Таким образом, строится двумерная матрица, в которой каждой паре значений соответствует сигнал амплитудой S – Двумерное Фурье-преобразование превращает сигнал во временной области S. Такое Фурье-преобразование можно записать следующим образом:
Выражение представляет собой следующую цепь операций: сначала все сигналы свободной индукции подвергаются Фурье-преобразованию по переменной t2. Возникающая при этом новая матрица данных содержит в строках спектры ЯМР, соответствующие значениям ti. Затем проводится второе Фурье-преобразование по переменной t\, т.е. данные, приведенные в столбцах, рассматриваются как отдельные сигналы свободной индукции, и они, как обычно, подвергаются Фурье-преобразованию.
Фурье-преобразование имеет действительную и мнимую части. Обычно вычисляют только действительную часть или модуль функции S. Интенсивности в двумерных спектрах имеют вид поверхностей, представленных как график функции двух переменных, т.е. напоминают изображение земной поверхности. Графически двумерные спектры представляют двумя способами. Первое представление – двумерная поверхность – дает наглядную картину 2М-спектра. Второе представление выглядит как географическая карта, на которой линии уровня соответствуют сигналам одинаковой интенсивности. Такое представление обычно используется при обработке двумерных спектров для того, чтобы избежать перекрывания слабых сигналов сильными.
В табл. приведены последовательные этапы обработки данных при построении одномерных спектров. Если попытаться перечислить все варианты двумерной ЯМР-спектроскопии, то это была бы весьма сложная задача, поскольку их более сотни. Однако для биологических приложений используются лишь некоторые из них. Чтобы их упорядочить, прежде всего необходимо подчеркнуть различие между гетероядерной и гомоядерной 2М-спектроскопией. В гомоядерной спектроскопии наблюдается взаимодействие ядер одного сорта, например, протонов. В этом случае двумерная импульсная последовательность состоит из импульсов, воздействующих на спиновую систему на близких частотах. В гетероядерных экспериментах наблюдаются взаи-модействия ядер различных типов, например, Си Н, и в импульсной последовательности содержатся импульсы из различных частотных областей.