Динамика структурных изменений и рассеяние света.

Страница 1

Как уже было отмечено, в магнитной жидкости с микрокапельной структурой в электрическое поле помимо сил поляризационного происхождения существенную роль играют кулоновские силы, обусловленные накоплением заряда на межфазных границах. Вследствие этого, в подобных системах возможно развитие специфических электрогидродинамических неустойчивостей, лимитируемых процессами релаксации заряда, а также формой капель. Электрогидродинамические процессы приводят к изменению структуры магнитной жидкости, что в свою очередь оказывает влияние на магнитные и оптические свойства такой МЖ. Так, например, благодаря этим процессам в магнитной жидкости наблюдается дифракционное рассеяние света, имеющее ряд особенностей [175,176].

Исследование характера электрогидродинамических неустойчивостей и рассеяния света проводилось в тонких слоях (20 -40 мкм) магнитных жидкостей, заключенных между прозрачными стеклами с токопроводящим покрытием. Наблюдение микроструктуры осуществлялось с помощью оптического микроскопа. При исследовании дифракционного светорассеяния применялся гелий-неоновый лазер, луч которого пропускали перпендикулярно плоскости ячейки. Характер рассеяния света наблюдали на экране, а относительную величину интенсивности рассеянного света регистрировали с помощью фотоэлемента и цифрового прибора. Кроме описанной, использовалась также измерительная ячейка, позволяющая создавать электрическое поле, перпендикулярное световому лучу, устройство которой аналогично измерительной ячейке, использованной ранее для исследования компенсации формы капель в сонаправленных электрическом и магнитном полях (рис.2.13).

Рис.2.13. Схема ячейки для исследования деформации микрокапельных агрегатов в электрическом поле; 1 - предметное стекло, 2 - металлические пластины, 3 - магнитная жидкость с агрегатами, 4 -покровное стекло.

В достаточно слабых переменных электрических полях низкой частоты (30 - 200 Гц) магнитная жидкость с микрокапельной структурой становится анизотропной. Результаты оптических наблюдений, как уже указывалось ранее, показывают, что в полях достаточно низкой частоты, когда электропроводность капель ниже, чем окружающей их среды капли сплющиваются вдоль направления электрического поля. В результате возникновения анизотропии структуры в МЖ наблюдается анизотропное светорассеяние. Наблюдающееся при отсутствии поля светлое пятно ("гало") трансформируется в широкую размытую полосу, направленную параллельно малым осям сплющенных капель. На рис. 34 показана зависимость относительной величины интенсивности наблюдаемой светлой полосы от напряженности электрического поля.

Рисунок 34. Зависимость относительной величины анизотропного светорассеяния от напряженности переменного электрического напряжения при частоте 50Гц (10 - начальный фон).

Из приведенного графика видно, что первоначально, при повышении электрического поля происходит увеличение интенсивности анизотропного рассеяния света, что соответствует увеличению деформации капельных агрегатов. Однако, начиная с некоторого, критического значения напряженности, в системе развиваются электрогидродинамические течения, достаточные для разрушения капельных агрегатов и созданной слабыми полями анизотропии структуры. В этом случае наблюдается уменьшение относительной величины анизотропного светорассеяния. Таким образом, при возникновении электрогидродинамической неустойчивости происходит уменьшение структурной, а следовательно и магнитной анизотропии магнитных жидкостей с микрокапельной структурой. Возникновение неустойчивости, как уже указывалось, связано с процессами релаксации заряда в слабо проводящей несущей среде. А.О.Цеберсом при анализе подобных явлений [173] было показано, что в достаточно слабых полях, когда характерное время поворота частицы в вязкой среде велико по сравнению с временем релаксации заряда, ее положение в электрическом поле устойчиво. В противном случае свободные заряды, определяющие ориентацию частиц с наименьшим коэффициентом деполяризации вдоль поля, не успевают перераспределиться по ее поверхности, и развивается неустойчивость. При этом неустойчивость имеет колебательный характер и наступает при

(4.56)

где k0 и k∞ - статическая и высокочастотная поляризуемость (индексы и ║ и обозначают направления вдоль и поперек длинной оси эллипсоида). Для угловой частоты возникающих колебаний анизотропии получено выражение

(4.57)

Согласно проведенных нами расчетов [176], соотношение (4.56) в случае непроводящих сферических частиц, взвешенных в среде с вязкостью η=0,1 Па с и характерным временем релаксации заряда τ = 10 с, что соответствует удельному сопротивлению около 0,1 Ом м, для напряженности поля дает величину 400 кв./м В полях такого же порядка наблюдается развитие электрогидродинамической неустойчивости в эксперименте. Изучение характера неустойчивости осуществлялось с помощью наблюдений в микроскоп, которые выявили на поверхности слоя жидкости подвижную сотовую структуру, характерную для неустойчивости Бенарда.

Страницы: 1 2 3